Vollständiges elliptisches Integral I. Art

Obwohl mir der Begriff des Elliptischen Integrals seit Langem geläufig ist, drängte sich mir nie eine Anwendung dafür auf. Zum Teil wahrscheinlich deshalb, weil die Abhilfe zu deren Umgehung oftmals in Tabellenform vorliegt.

Als ich mich kürzlich intensiver mit der Hertz’schen Pressung beschäftigte, stolperte ich über eine nun als solche erkannte, schon des Öfteren benutzte Tabelle! Die vorliegenden Zahlenwerte in ein eigenes Tabellenblatt zu tippen und mittels SVERWEIS zu interpolieren, wäre die althergebrachte Vorgehensweise mit existenten Excel-Methoden gewesen.
Alternativ zeigt die 3. Formel der angeführten Reihenentwicklungen auf THE WOLFRAM FUNCTIONS SITE: \[ K(z) = \frac \pi 2 \sum_{k = 0}^\infty \frac {\left( \frac 1 2 \right)_k \left( \frac 1 2 \right)_k z^k}{k!^2} \]
Der darin doppelt vorkommende indizierte Klammerausdruck ist das bereits veröffentlichte Pochhammer-Symbol.
Da eine Konvergenz nur für \( |z|<1 \) gegeben ist, braucht es für \( z<-1 \) noch die Identität \( K(z<-1) = \frac 1 {\sqrt {1-z}} K \left( \frac z {z-1} \right) \), als zweite von 7 angebotenen auf THE WOLFRAM FUNCTIONS SITE.
Um eine annehmbare Genauigkeit zu erhalten, müssen ausreichend viele Glieder aufsummiert werden, wobei Fakultäten – insbesondere potenziert – dem allzu schnell ein Ende setzen können. Es bietet sich hier also an, den Quotienten \( \frac {\left( \frac 1 2 \right)_k}{k!} \) zu quadrieren, was mit \( \left( \frac 1 2 \right)_k = \frac {(2k – 1)!}{2^{2k-1} (k-1)!} \) zu \( \frac {\Gamma \left[ \frac 1 2 +k \right]}{\sqrt \pi \Gamma \left[ 1+k \right]} \) führt. \( \Gamma \) steht dabei für die Gamma-Funktion, die Excel anbietet, weswegen einer Formel nichts mehr im Wege steht. Als Besonderheiten müssen noch folgende speziellen Werte berücksichtigt werden: \( K(1) = \infty \) , \( K(0) = \frac \pi 2 \) und \( K(-1) = \frac {\Gamma \left( \frac 1 4 \right)^2}{4 \sqrt {2 \pi}} \).

Damit die Formel alle Glieder aufsummiert, muss sie als Matrixformel (Arrayformel) eingegeben werden. Die Begrenzung der Gliederanzahl kommt dabei von der größtmöglichen positiven Zahl in Excel, weswegen die Gamma-Funktion keine größere ganze Zahl als 171 zulässt.
Die Formel zeigt deutliche Abweichungen in der Nähe von 1, weil dort die Gliederanzahl nicht mehr auslangt, und hat den Nachteil, dass sie nicht mehrere \( z \) gleichzeitig bedienen kann, weil die Matrixfähigkeit schon für die Gliedersummierung verbraucht wurde!

Das alles kann mittels der Benutzerdefnierten Funktion K_z(z) erfüllt werden, wobei z eine einzelne Zahl, eine Matrix-Konstante, eine einzelne Zelle oder ein einzeiliger oder einspaltiger Zellbereich sein darf. Nicht mehr die Anzahl der Glieder ist schlagend, sondern die geforderte Genauigkeit, fixiert auf die 15 signifikanten Stellen in Excel, bei deren Erreichen abgebrochen wird. Die Restriktion der Gamma-Funktion kann umgangen werden, weil in einer Schleife nicht jedes Glied gänzlich neu berechnet werden muss. Auch noch Rechenzeit sparend, ist ein neues Glied das vorhergehende multipliziert mit deren Quotienten.

Die nachfolgenden Datei enthält alles obig Beschriebene nachvollziehbar, wobei der Vergleich mit Werten aus Mathematica gezogen wird:

Bemerkung: Wegen der Funktion GAMMA nicht als 97-2003-Version.