Kerbformoptimierung

Ich weiß nicht mehr, wie ich auf das Buch “Warum alles kaputt geht” von Professor Claus Mattheck gestoßen bin. Vielleicht habe ich wieder einmal nach meinem Steckenpferd “Bionik” gegoogelt. Jedenfalls gesellte es sich zu jenen von Professor Werner Nachtigall:

  • Vorbild Natur: Bionik-Design für funktionelles Gestalten
  • Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler
  • Das große Buch der Bionik: Neue Technologien nach dem Vorbild der Natur
  • Natur macht erfinderisch: Das große Buch der Bionik

Weitestgehend auf Mathematik verzichtend handeln die Seiten 98 bis 103 von einer möglichst kerbfreien Schulter eines abgesetzten Bauteils, das auf Zug beansprucht ist.
Im Formelanhang auf Seite 186 findet sich dafür unter dem Titel “Formoptimierung” folgende detailliertere Skizze:

Quelle: “Warum alles kaputt geht”, mit freundlicher Genehmigung von Professor Claus Mattheck

Die nächste Seite präsentiert dazu schließlich folgende Formeln: \[ \begin{array}{lcr}
& \Delta F_T = – \Delta F_Q & (1) \\
& F_T^i – F_T^{i + 1} = F_Q^{i + 1} – F_Q^i & \\
& F_T^{i + 1} = F_0 \frac {D_0} {D_{i + 1}} \cos \left( \sum_{k = 0}^i \alpha_k \right) & (2) \\
& F_T^i = F_0 \frac {D_0} {D_i} \cos \left( \sum_{k = 0}^{i – 1} \alpha_k \right) & (3) \\
& F_Q^{i + 1} = 2 F_T^{i + 1} \sin \left( \frac {\alpha_{i + 1}} 2 \right) & (4) \\
& F_Q^i = 2 F_T^i \sin \left( \frac {\alpha_i} 2 \right) & (5) \\
\text{mit} & D_{i + 1}=D_i + 2 s \sin \left( \sum_{k=0}^i \alpha_k \right) & \text{folgt aus (1) – (5):} \\
& \alpha_{i+1} = 2 \arcsin \left\{ \frac {\frac {D_{i+1}}{D_i} \cos \left( \sum_{k = 0}^{i-1} \alpha_k \right) \left[ 1 + 2 \sin \left( \frac {\alpha_i} 2 \right) \right] – \cos \left( \sum_{k = 0}^i \alpha_k \right)}{2 \cos \left( \sum_{k = 0}^i \alpha_k \right)} \right\} & (6)
\end{array} \]

Als einstmaliger Konstrukteur kam es mir so vor, als wollte man den klassischen Korbbogen in praxisuntauglicher Form akademisch neu erfinden. Als Berechnungsingenieur interessierte mich der Ansatz durchaus, weswegen ich ihn eingehender studierte.
Die Verhältnisse \( \frac {D_0}{D_{i + 1}} \) und \( \frac {D_0}{D_i} \) in den Gleichungen \( (2) \) und \( (3) \) sind eigentlich die Flächenverhältnisse mit herausgekürzter Dicke bei Zug- oder Druckspannung.
Zur allgemeinen Anwendung werden \( \left( \frac {D_0}{D_i} \right)^{k_W} \) und \( \left( \frac {D_0}{D_{i + 1}} \right) ^{k_W} \) als Widerstandsverhältnisse eingeführt, mit:
\( \bullet\ k_W = 1 \) für Zug und Druck eines ebenen Querschnitts der Breite \( D \)
\( \bullet\ k_W = 2 \) für die Biegung eines ebenen Querschnitts der Breite \( D \)
\( \bullet\ k_W = 3 \) für die Biegung und Torsion eines Kreisquerschnitts mit Durchmesser \( D \)
Damit ergibt sich eine universellere Formel für den lokalen Knickwinkel:
\[ \alpha_{i+1} = 2 \arcsin \left\{ \frac { \left( \frac {D_{i+1}}{D_i} \right)^{k_W} \cos \left( \sum_{k = 0}^{i-1} \alpha_k \right) \left[ 1 + 2 \sin \left( \frac {\alpha_i} 2 \right) \right]}{2 \cos \left( \sum_{k = 0}^i \alpha_k \right)} – \frac 1 2 \right\} \]

Daraus entstand eine App mit folgenden Eigenschaften:
Vorwahl der Spannungsart Zug/Druck, Biegung: Ebener QS, Biegung: Runder QS oder Torsion, Festlegung einer Segmentanzahl von 1 bis 10 und die Vorgabe eines Anfangsquerschnitts.
Mittels des Solvers werden Segmentlänge und Anfangswinkel derart variiert, dass etwaige Minima und Maxima derselben aber auch jene eines Abbruchwinkels und der Länge und Höhe der Kerbe eingehalten werden. Dabei wird immer versucht, die Höhe voll auszunützen. Die Koordinaten der sich ergebenden Spline-Punkte können sodann im CAD verwendet werden: