Kerbformoptimierung mit Ellipse

Während der Beschäftigung mit der Kerbformoptimierung mit Zugdreiecksmethode fand ich auch das im Jahre 2008 vom Karlsruher Institut für Technologie (KIT) herausgegebene Poster Die Methode der Zugdreiecke im Vergleich mit anderen Kerbformen.
Einer der Autoren ist Professor Claus Mattheck, und so nimmt es nicht wunder, dass die drei Kerbformen 45°-Kreissegment, Zugdreieck und Tangens, deren Quellen seinen Namen tragen, auch einen Dreifach-Sieg einfahren!

Die erste seiner Kerbformen hat es schon im Namen, bei der Methode der Zugdreiecke ist es anempfohlen und der Steigungswinkel des Tangens bei 0° (gar ein Grund für diese Kerbform?) ist – nämlich 45°. Der Effekt des scharfen Anschlusses wird euphemistisch “kleine Spannungsspitze” genannt, der tatsächlich größere Bauraum durch einen fertigungsbedingten Radius unter den Teppich gekehrt. Bei Einhaltung des gleichen Bauraums ergeben sich also zwingend größere Spannungsüberhöhungen als angegeben! Da hilft dem 45°-Kreissegment der vermeintliche Vorteil des geringen \( L_{ax} / L_{rad} = 2{,}4 \) auch nichts mehr.

Warum auch immer der Tangens einer Untersuchung unterzogen wurde, für mich wären Kosinus hyperbolicus als Kettenlinie, gespitzte Zykloide wegen enthaltener Brachistochrone und Klothoide mit Proportionalität von Krümmung zur Bogenlänge jedenfalls naheliegender gewesen.
Bei den Kerbformen mit tangentialem Anschluss gefällt mir deswegen die Traktroide, weil auch sie “natürlich wirkt”. Richtigerweise müsste es Traktrix heißen (die Bemaßung der dargestellten Zuglasche suggeriert einen Rotationskörper, was sie aber nicht ist).
Zu R. V. Baud und P. Grodzinski sei angemerkt, dass ihre Kerbformen eingedenk des Alters und obig angemerkter Beschönigungen nach wie vor konkurrenzfähig sind, obzwar erstere mit \( L_{ax} / L_{rad} = 5{,}0 \) zu kämpfen hat!
\( L_{ax} / L_{rad} \) sollte bei gegebenem \( L_{rad} / d \) optimalerweise möglichst klein sein, weswegen die Angabe eines einzigen Wertes für alle drei Fälle im Gesamtverhältnis \( 1:10 \) fragwürdig erscheint.

Dies hat sich im Zuge der Beschäftigung mit der Ellipse auch bewahrheitet:

  • Die dargestellten Spannungsüberhöhungen von ca. \( 4{,}1 \), \( 3{,}1 \) und \( 1{,}8 \) bei \( L_{rad} / d = 0{,}027 \), \( 0{,}054 \) und \( 0{,}27 \) des (Viertel-)Kreises – als Sonderfall einer Ellipse – sind eindeutig jene des Ebenen Spannungszustands (ESZ).
  • Die Spannungsüberhöhungen des (Viertel-)Kreises für Axialsymmetrie (AS) ergeben sich nämlich zu etwa \( 3{,}3 \), \( 2{,}5 \) und \( 1{,}5 \).
  • Die Ellipse zeigt bei \( L_{rad} / d = 0{,}027 \), \( 0{,}054 \) und \( 0{,}27 \) für \( L_{ax} / L_{rad} \) Optima für ESZ bei ungefähr \( 1{,}9 \), \( 2{,}3 \) und \( 5{,}6 \) und für AS bei rund \( 1{,}8 \), \( 2{,}4 \) und \( 27 \).
  • \( L_{ax} / L_{rad} = 3{,}4 \) ist also nur optimal für ein \( L_{rad} / d \) von ca. \( 0{,}16 \) (ESZ) bzw. \( 0{,}14 \) (AS).
  • Bis zu diesen \( L_{rad} / d \) kommt die Ellipse bei optimal gewähltem \( L_{ax} / L_{rad} \) jedenfalls mit Baud und Traktrix aufs Podest!
  • Über diesen \( L_{rad} / d \) triumphiert die Traktrix wegen ihres geringen \( L_{ax} / L_{rad} \), mit Baud kann bei ESZ noch mitgehalten werden, bei AS geht der Anschluss schnell verloren.
  • 45°-Kreissegment, Zugdreieck und Tangens werden wegen Dopings und Praxisuntauglichkeit disqualifiziert.
  • Und selbst die passendste Ellipse ließe sich durch einen klassischen Korbbogen zumindest gleichwertig ersetzen!

Die folgende Datei zeigt obige Zusammenhänge nicht nur punktuell, sondern durchgehend von \( L_{rad} / d = 0{,}027 \) bis \( 0{,}27 \) bei Zug/Druckbelastung für ESZ und AS: