Scherenhubtisch Typ 2

Wie schon im Beitrag Scherenhubtisch Typ 1, möchte ich auch hier das Buch Auslegung von Maschinenelementen von Stephan Regele wärmstens empfehlen! Die mitgelieferten Excel-Berechnungstools zu allen Kapiteln haben es mir besonders angetan. 😉

Bei Typ 2 soll wiederum eine relevante Reduktion der Zylinderkraft angestrebt werden, ohne die Konstruktion groß umzukrempeln. Gerechterweise sei angemerkt, das man nicht davon ausgehen kann, in den präsentierten Beispielen bereits Optimierungen anzutreffen! Aber als Ziel für eine preiswerte Herstellung und einen günstigen Betrieb darf es gelten.

Der komplexere Typ 2 sollte ein größeres Optimierungspotenzial haben als Typ 1.
Die Berechnung der Zylinderkraft kann man dem Buch entnehmen. Sind die Gelenkkräfte nicht von Interesse, dann liegt das Prinzip der virtuellen Verschiebungen näher. Normalerweise sprechen Reibungskräfte dagegen, sind sie aber, wie in diesem Fall, relativ einfach zu eruieren, dann ist es oftmals der direktere Weg. Wenn man aus dem sich gemäß Buch ergebenden Gleichungssystem die Gelenkkräfte eliminiert, dann muss sich jedenfalls auch folgender Ausdruck ergeben:

\[ F_Z = -F \frac { a + b \pm \mu \tan \alpha \left( \left| b – a + c \sqrt { 1 + \tan ^2 \alpha } \right| + \vert c \vert \sqrt { 1 + \tan ^2 \alpha } \right) } { \frac { \mu \left( b + d \right) \tan \alpha \left( \tan \alpha + \tan \gamma \right) + e \left( 1 – \tan \alpha \tan \gamma \right) } { \sqrt { 1 + \tan ^2 \gamma } } + \frac { \left[ \left( \left( b + d \right) \tan \alpha + e \right) x_S – \left( b + d – e \tan \alpha \right) y_S \right] \sqrt { 1 + \tan ^2 \alpha } } { \sqrt { \left( b + d – e \tan \alpha – x_S \sqrt { 1 + \tan ^2 \alpha} \right) ^2 + \left( \left( b + d \right) \tan \alpha +e – y_S \sqrt { 1 + \tan ^2 \alpha} \right) ^2 } } } \]
mit \( \tan \alpha = \frac{ 1 } { \sqrt { \left( \frac{ a + b } { H } \right) ^2 – 1 } } \) und \( \tan \gamma = \frac { \left( b + d \right) \tan \alpha + e – y_S \sqrt { 1 + \tan ^2 \alpha } } { x_S \sqrt { 1 + \tan ^2 \alpha } – b – d + e \tan \alpha } \)

Ein Druckzylinder weist eine negative, ein Zugzylinder eine positive Zylinderkraft auf.
Je nachdem, ob angehoben oder abgesenkt wird, braucht es unterschiedliche Vorzeichen vor der Reibzahl \( \mu \), was mittels eines Schalters zufolge des gewählten Modus “Heben” oder “Senken” erreicht wird.
Die Beträge sind nötig, damit sich die Wirkungsrichtung der Reibungskräfte nicht umkehrt.
Der Makro für den Solver wird mittels Befehlsschaltfläche >>> Solver <<< gestartet, wobei folgendes gilt:

  • Es wird die betragsmäßig kleinste Zylinderkraft \( F_Z \) gesucht
  • Variable Parameter dafür sind \( a \), \( b \), \( c \), \( d \), \( e \), \( x_S \) und \( y_S \)
  • Diese werden nur variiert, wenn Unter- oder/und Obergrenze (Min, Max) vorliegt/vorliegen
  • Minimale oder/und maximale Zylinderlänge kann/können ebenfalls vorgegeben werden
  • Für die Abstände des Punktes Z zu den Grenzen A-D und B-C wurden eigene Nebenbedingungen geschaffen
  • Die Abstände \( a \) und \( c \) tendieren gegen 0, also gegebenenfalls Min > 0 setzen
  • Die Abstände \( d \) und \( e \) nicht allzu sehr einschränken, damit der Solver sie optimal kombinieren kann

Die folgende Datei enthält überdies zwei Diagramme, wobei die Geometrie unverzerrt dargestellt wird. Ein Makro erweckt sie mittels Befehlsschaltfläche >>> Animation <<< zum Leben und weckt hoffentlich auch Ihren Spieltrieb: