Pochhammer-Symbol

Für mich als “bloßen” Maschinenbauer hält die Mathematik naturgemäß noch immer Rätsel bereit, so auch kürzlich mit dem Ausdruck \( (a)_n \). Mittels Google fand sich schließlich das bis dato noch nie gebrauchte und mir somit gänzlich unbekannte Pochhammer-Symbol. Darauf gestoßen bin ich auf der Suche nach Reihen-Formeln für elliptische Integrale.

Excel bietet diesbezüglich keine eigene Funktion an, weswegen eine Umsetzung mit anderen, vorhandenen Funktionen nötig war. Da sich eine ausführliche Systematik des Symbols auch bei Wolfram Research findet, stand dem nichts mehr im Wege.
Die Parameter \( a \) und \( n \) schreien zumindest für mich förmlich nach einer Matrixformel, die beide gleichzeitig bedienen kann. Leider verweigerte mir die vorhandene Funktion PRODUKT(Zahl1; [Zahl2]; …) dies, da Zahl1 dazu ein Bereich hätte sein müssen, welcher aber bestimmungsgemäß ausmultipliziert wird. Blieb also “nur” die “abgespeckte” Form des Spaltenvektors, wobei auch die Formel in einer einzelnen Zelle als Matrixformel eingegeben werden muss, damit die einzelnen Faktoren für das Produkt erzeugt werden! Das “Umstricken” einer umgekehrten Anordnung sollte für den geübten “Excelianer” kein Problem darstellen.
Für die “Vollversion” musste ich also VBA bemühen und eine Benutzerdefinierte Funktion POCHHAMMER(a;n) programmieren. \( a \) darf dabei eine einzelne Zahl, eine Matrix-Konstante, eine einzelne Zelle oder ein einzeiliger oder einspaltiger Zellbereich sein. Gleiches gilt für \( n \), wobei hier sinnvollerweise ganze Zahlen erwartet würden. Die FOR-Schleife sorgt bei Nichterfüllung aber ohnehin dafür. Die umgekehrte Anordnung kann einfach mit MTRANS(POCHHAMMER(a;n)) bewerkstelligt werden.

Die folgende Datei enthält die Tabellenblätter Formel und UDF, um Obiges nachvollziehbar zu machen. Formel enthält in Spalte C Einzelformeln, der Rest sind Matrixformeln, eine einzige findet sich in UDF: